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This article contains an elementary proof of the fundamental theorem of algebra
which uses only well-known results from calculus. It also explains how the same basic
idea can be used to provide a very short proof of that theorem based upon Cauchy’s
integral formula.

The fundamental theorem of Algebra states:
Every non-constant polynomial function from the complex field into itself has at

least one zero.
In order to prove it, suppose that there is some polynomial function P from the

complex field into itself which is not constant and which has no zeros. Since P(z) is
never 0, we can consider the function

f : [0,∞) −→ C

r 7→
∫ 2π

0

1
P
(
reit

) dt.

Since limr→∞

∣∣P(
reit

)∣∣ = ∞, we have limr→∞ f (r) = 0. On the other hand, f (0) =
2π/P(0) 6= 0. Therefore f cannot be constant. We shall now prove that f is constant,
thereby reaching a contradiction.

Since the domain of f is the interval [0,∞) and since f is clearly continuous, in
order to prove that f is constant, it will be enough to prove that f ′(r) = 0 when r > 0.
To compute f ′(r) for r > 0, all that we have to do is to apply Leibniz’s rule (see [2,
ch. 9], for instance); in this particular case, Leibniz’s rule says that
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reix

) dx. (1)

On the other hand, since
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it is a consequence of (1) that

f ′(r) =
1
ir

∫ 2π

0

∂
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P
(
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) dx =
1
ir

[
1

P
(
reix

)]x=2π

x=0
= 0.

This concludes the proof of the fundamental theorem of algebra, but let’s see where
the definition of f comes from; this will lead us to another proof of the theorem, which
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will be based upon Complex Analysis. According to Cauchy’s integral formula (see [1,
ch. III] or [3, ch. 7] for more details as well as for background), if A is an open subset
of C, g is an analytical function from A into C, a ∈ A and r > 0 is such that the closed
disk D(a,r) is contained in A, then

g(a) =
1

2πi

∫
γ(r,a)

g(z)
z−a

dz,

where γ(r,a): [0,2π]−→ C is the closed path defined by t 7→ a+ reit .
Let us apply Cauchy’s integral formula to the function 1/P, taking a = 0 and an

arbitrary r > 0; then we have

1
P(0)

=
1

2πi

∫
γ(r,0)

1
zP(z)

dz. (2)

But
1
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∫
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dz =
1

2π

∫ 2π

0
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) dt =
f (r)
2π

·

Note that (2) then states that f ≡ 2π/P(0); in particular, f is constant and non-null.
Again, the fact that limr→∞ f (r) = 0 allows us to reach a contradiction. This approach
through complex analysis provides a very short (although not elementary) proof of the
fundamental theorem of algebra.
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